我来答 分享举报1个回答#热议# 足球比赛忽遇风雨,要怎么办?匿名用户
2016-04-29电子束离子束加工的发展趋势及应用聚焦的离子束在半导体行业有着重要作用,可用来切割纳米级结构,对光刻技术中的屏蔽板进行修补,分离和分析集成电路的各个元件,激活由特殊原子组成的材料,使其具有导电性等等。聚焦的离子束在其他方面也有应用。可用来分析样品化学成分、进行生物研究以及制造保持血管畅通的心脏固定膜等微型医学植入材料。但是,在用带正电荷的离子束对绝缘材料进行成像或进行缩微处理时,常常会出现麻烦,绝缘材料会逐渐带上正电荷,从而会排斥带同性电荷的离子束,使聚焦的离子束发散,影响精度。科学界解决这一问题的传统方法有两个:一个是在离子束到达非金属绝缘体之前,通过一种气化元件进行中和;另一种方法是在绝缘材料上设置一电子束中和这个带正电的离子束。但是这两种方法都有其弊端,第一种方法往往要求加大离子束加速器和绝缘材料之间的距离,而距离太长会干扰离子束的聚焦。第二种方法中,产生额外的电子束需要另一电子加速器,而且要求与离子束随时保持在同一直线上,对于多束离子同时作用一种材料,很难实现这些要求。而美国科学家对其实验室发明的多离子束系统进行改进后,得到了中和正离子的全新方法。与传统聚焦离子束装置中的液化金属离子不同,这一新系统使用两个离子束腔,将气态分子中的电子和正离子分离。通过三条电极组成的电极棒将两个腔隔开,一个腔只允许电子通过,另一个腔只许正离子通过。这样的设计,不但可以形成加速的离子束,而且也不会阻止电子束的通过,最后离子束达到目标材料后,离子和电子会自我中和形成先前的气态原子,也不会导致目标材料带电。利用这种装置可以对各种离子进行加速,包括惰性气体、锰等金属甚至碳60这样的分子团,都可以用来形成离子束。另外,科研人员还利用多孔屏蔽板,获得圆洞形、线性和弧形等不同形状的离子束,发射一次离子束可以生产几千个心脏内膜,大大提高了效率。离子束刻蚀离子束刻蚀以离子束为刻饰手段达到刻饰目的的技术,其分辨率限制于粒子进入基底以及离子能量耗尽过程的路径范围。离子束最小直径约10nm,离子束刻蚀的结构最小可能不会小于10nm。目前聚焦离子束刻蚀的束斑可达100nm以下,最少的达到10nm,获得最小线宽12nm的加工结果。相比电子与固体相互作用,离子在固体中的散射效应较小,并能以较快的直写速度进行小于50nm的刻饰,故而聚焦离子束刻蚀是纳米加工的一种理想方法。此外聚焦离子束技术的另一优点是在计算机控制下的无掩膜注入,甚至无显影刻蚀,直接制造各种纳米器件结构。但是,在离子束加工过程中,损伤问题比较突出,且离子束加工精度还不容易控制,控制精度也不够高。束流强度达几十万以至上百万安培的束流。它比通常加速器的束流密度高几万倍以至几十万倍。20世纪60年代初期,由于模拟核爆炸条件下γ射线辐照效应和X射线照相的需要,强流脉冲电子束加速器得到了迅速发展,70年代后,由于粒子束惯性约束聚变、电子束抽运气体激光器、电子束产生高功率微波等研究工作的要求,研制了低电压大电流的电子束加速器,并在这些技术的基础上获得了强流脉冲离子束。1984年已能产生1MeV、1MA的轻离子束,强流脉冲电子束也达到了如下的技术水平:电子能量0.3MeV~12MeV电子束流10kA~5MA脉冲宽度10ns~100ns总束能1kJ~5MJ功率1011W~3×1013W这些束流之特点是束流能量大、功率高、电流大、时间宽度窄。这种基于物理学和电工学相结合的高功率脉冲技术是一门新的前沿科学技术,近年来发展极为迅速,已成为研究高温高压等离子体物理的重要工具,它在经济和军事应用方面有着广阔的前景。强流脉冲电子束的产生强流脉冲电子束加速器主要由三个部分组成,即冲击电压发生器、脉冲成形线与脉冲传输线和场致发射二极管。从冲击电压发生器输出的微秒级上升时间的高压脉冲经脉冲成形线成形为几十纳(10-9)秒上升时间的高压脉冲,并由传输线输运至场致发射二极管,二极管起着将电磁能转变为电子束的能量的作用。冲击电压发生器见脉冲倍压发生器之图2。冲击电压发生器的工作原理是对电容器组并联充电串联放电,获得脉冲高压输出,减小冲击电压发生器电感,可缩短输出高压脉冲的上升时间。电容器的排列有Z型、S型和混合型等,采取正、负充电线路,可使火花球隙数目减少一倍。LC反转冲击电压发生器的电感小,输出脉冲上升时间短,但当所有球隙不能在同一时间内击穿时,过电压会把电容器击穿。脉冲成形线和脉冲传输线如图1所示。冲击电压发生器输出的电压脉冲,对脉冲成形线充电,当电压充至一定值时主开关接通,成形线中开始了波过程,经过时间在成形线末端产生时间宽度为的高压脉冲加在场致发射二极管上。L为成形线长度,с为光速,ε为成形线介质的介电常数,也可以通过变阻抗传输线加到二极管上,以达到升压或降压的目的。脉冲成形线和脉冲传输线中充以去离子水或变压器油,对于亚微秒充电时间的高压脉冲,水是很好的绝缘介质,水的储能密度大、价廉,发生电击穿后能很快恢复不留痕迹。可根据T.H.马丁的经验公式来考虑脉冲成形线和脉冲传输线的绝缘要求。强流电子束二极管阴极表面细微的针尖状结构,使场强增大约100倍,趋于108V/cm,由此引起的电流的增强造成阴极上微小尖端的蒸发,蒸发物的电离形成阴极等离子体,并从中发射电流,阴极等离子体的前沿以1~4×104m/s的速度向阳极运动,随着束流的增强,在阳极上吸附的气体释放出来并被电离,形成阳极等离子体,它以约1×104m/s的速度向阴极运动。描述二极管中电子束流特性的一个重要物理量是v/γ值,v是单位长度上电子数目乘电子经典半径,,,IA称为阿尔文电流。低v/γ值二极管阻抗可由蔡尔德-朗缪尔公式描述,平行板二极管阻抗为式中V以兆伏为单位,R是二极管半径,d是阴阳极间隙距离,以厘米为单位,μ是阴极等离子体运动速度,以厘米/秒为单位,Z以欧姆为单位,K(V)是随着V而增长的函数,对于非相对论性束流K(V)=136。当二极管中电流超过了临界电流值时,电子轨迹开始箍缩,这时电子的拉莫尔半径等于电子束半径的一半,并等于阴阳极之间的间距。在高v/γ值的二极管中,当达到临界电流值时,束流开始箍缩,实验观察到箍缩主要在脉冲的后一段时间内形成,并以(1~5)×106m/s的径向崩塌速度进行,它比等离子体膨胀速率大一个半到二个数量级,这是由于阳极等离子体中的正离子向阴极运动,改变了空间电荷分布,增大了二极管电流,从而使箍缩进一步发展。箍缩发生后,二极管阻抗大致和”顺位流模型”的计算值相符。箍缩的结果使电子向二极管的轴线方向移动。由于空间电荷的堆积,造成阴极
中心部分轴向电场的减小,从而降低了阴极中心区域的电子发射,过剩的空间电荷使得等位面分布接近锥形。电子沿锥形等位面运动。等位面的法线方向和磁场方向垂直。因而向外的电场力和向内的自磁场力方向相反。空间电荷堆积一直继续到作用在电子上的净力为零。于是从阴极边界处发出的电子沿等位面作净力为零的运动。按顺位流模型可得进一步考虑阴极和阳极表面上存在的等离子体对箍缩所起的作用,建立了聚焦流模型,按照该模型聚焦束流为强流离子束的产生在双极性流的情况下,质子流和电子流密度满足方程式中x是阴阳极之间距离,V是阴阳极间隙上的电压,εo是空气介电常数,e是电子电荷,mp是质子质量。电子流密度约为质子流密度的43倍,强流离子二极管的工作原理是利用电场或磁场抑制电子到达阳极,使二极管的能量大部分为离子所带走,现有的离子二极管有三种类型:反射型二极管从阴极射出的电子穿过薄阳极靶后,遇到一个反向电场,使电子减速并回转,重新穿过阳极靶,然后阴阳极之间的电场又将电子拉向阳极。若靶上涂以某种有机物,由于电子来回穿过阳极靶,在靶上产生离子并向阴极运动(图2)。反射型二极管产生离子效率可达50%,实际上不需要第二个阴极,从阳极穿出的电子的堆积,形成虚阴极。离子流密度和电子流密度之比为式中Zm是离子的电荷,Mp是离子质量,〈Δθ2〉是散射角的均方值,散射角近似反比于二极管电压的二次方,离子流密度和二极管电压的关系可用7/2次方来描述。磁绝缘二极管。外加一个大于临界磁场Bcr的横向磁场,偏转电子,使它不能到达阳极。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END
喜欢就支持一下吧
暂无评论内容